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Abstract. We construct a theory of spin wave excitations in the bilayer manganite La1.2Sr1.8Mn2O7 based
on the simplest possible double–exchange model, but including leading quantum corrections to the spin
wave dispersion and damping. Comparison is made with recent inelastic neutron scattering experiments.
We find that quantum effects account for some part of the measured damping of spin waves, but cannot
by themselves explain the observed softening of spin waves at the zone boundary. Furthermore a doping
dependence of the total spin wave dispersion and the optical spin wave gap is predicted.

PACS. 75.30.DS Spin waves – 75.25.+z Spin arrangements in magnetically ordered materials (including
neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.)

1 Introduction

The colossal magnetoresistance (CMR) manganites, of
which perhaps the best known is La1−xCaxMnO3, have
been challenging the theoretical understanding of the way
in which magnetism and metallic behaviour co–exist for
more than fifty years. These materials are difficult to de-
scribe for precisely the very same reason that they are
interesting; namely that they exhibit a complex inter-
play between lattice, charge, orbital and spin degrees of
freedom. This gives rise to a very rich phase diagram,
exhibiting different magnetic, orbital and charge orders,
and both metallic and insulating behaviour as a function
of temperature, pressure, applied field and doping [1–3].
Even within the “simple” low temperature ferromagnetic
phase, the mechanism for the metal–insulator transition
which occurs as ferromagnetic order breaks down remains
controversial.

The CMR manganites share a layered perovskite struc-
ture with the even more widely studied high-temperature
(HTc) superconductors; they may be synthesised with one,
two, three (or many), neighbouring conducting planes.
The materials most frequently discussed are the three di-
mensional “infinite layer” compounds, which have equally
spaced planes and are approximately cubic in symme-
try. Here we will construct a theory for ferromagnetism
in La2−2xSr1+2xMn2O7 and discuss results especially for
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x = 0.4. In this bilayer compound planes of magnetic Mn
atoms in MnO6 octahedra are grouped in well separated
pairs. The small spin wave dispersion found empirically
perpendicular to these planes provides us with a justifica-
tion for considering, as a first approximation, only a single
pair of planes i.e. a single ferromagnetic bilayer with mo-
ments lying in the ab-plane [3,4]. The T–x phase diagram
and evolution of magnetic structure with doping has been
reported in [5–8] and a FM phase persists in the range
0.3≤ x ≤0.4. For larger doping an intra– bilayer canting
of moments appears and the charge ordered stoichiometric
compound (x = 0.5) LaSr2Mn2O7 finally is an AF insula-
tor. Here we will concentrate on predictions for the spin
wave dispersion and damping of FM bilayer manganites
which have been measured by inelastic neutron scatter-
ing [9–14,8]. Calculation of the spin wave damping re-
quires going beyond the usual semi–classical picture used
to describe spin wave excitations in the manganites to in-
clude quantum effects. In Section 2 we present a minimal
model of a bilayer manganite based on Zener’s double ex-
change (DE) mechanism [15,16]. A fully quantum mechan-
ical large S expansion of this model is developed, following
a recently introduced operator expansion method [17–20].
Predictions for the dispersion of the optical and acoustic
spin wave modes of a double exchange bilayer, their dop-
ing dependence together with their damping, are made
in Section 3. A comparison with experimental data for
La1.2Sr1.8Mn2O7 is made in Section 4. This comparison
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provides a test of how well the DE model describes FM
in CMR materials when quantum effects are included. We
conclude in Section 5 with a discussion of the implications
of our results for the theory of ferromagnetism in CMR
manganites.

2 The model Hamiltonian

In this section we consider La1.2Sr1.8Mn2O7, as a con-
crete example of a bilayer DE system, and derive a model
Hamiltonian for a single La1.2Sr1.8Mn2O7 bilayer start-
ing from Zener’s DE mechanism, in the limit where the
strength of the Hund’s rule coupling is taken to be infi-
nite. The comparison of the predictions of this model with
experimental data in Section 4 therefore provide a test of
how well the DE model describes FM in CMR materials.
The crystal structure of La2−2xSr1+2xMn2O7 belongs to
the space group I4/mmm with a body centred tetragonal
conventional unit cell that contains two distorted MnO6

octahedra, whose distortion depends on doping [5,6]. The
lattice constants are a = 3.87 Å and c = 20.14 Å. The
intra– bilayer spacing d ' a is much smaller than the dis-
tance D = 6.2 Å between two adjacent bilayers. Therefore
bilayers are well separated, and the spin wave spectrum
measured by inelastic neutron scattering indeed shows a
very small dispersion of about 0.4 meV in the direction
perpendicular to the planes [9,21]. For this reason we will
neglect coupling between the planes entirely, and model
La1.2Sr1.8Mn2O7 in terms of a single pair of layers. Within
a given bilayer, both magnetism and metallic behaviour
originate in the Mn d–electrons. Mn t2g d–orbitals are ex-
actly half filled, and form a spin 3/2 local moment because
of strong Hund’s rule coupling. This local moment cou-
ples to itinerant electron eg d–orbitals through a similar
Hund’s rule exchange interaction. In the metallic phases of
the manganites, electrons in eg orbitals delocalise by hop-
ping between Mn atoms through intermediate O2p orbitals
— a process named “double exchange” by Zener [15].
This delocalisation of the eg electrons stabilises FM or-
der among the t2g spins, since both are strongly coupled
by Hund’s rule interaction, and the eg electrons will have
the maximum kinetic energy if all t2g spins are aligned.

In the bilayer compounds the MnO6 octahedra show
a doping dependent pronounced Jahn-Teller (JT) distor-
tion [5,6], therefore Mn3+ site symmetry is no longer
cubic and a crystalline electric field (CEF) splitting of
eg (d3z2−r2 , dx2−y2) states ensues. The influence of this
splitting on the stability of magnetic phases was investi-
gated by Okamoto et al. [6]. The eg splitting energy ∆
is generally smaller than the inter-site in–plane hopping
t and therefore in the FM ground state the orbital state
is of uniformly mixed d3z2−r2/dx2−y2 character. In this
case orbital degrees of freedom do not appear explicitly
in the Hamiltonian but the degree of admixture deter-
mines the ratio of interlayer (t⊥) to intra–layer hopping
(t) of the effective single band (orbital) Hamiltonian which

is then given by

HDE = −t
∑
〈ij〉λα

c†iλαcjλα − t⊥
∑
iα

{
c†i1αci2α + h.c.

}
−JH

2

∑
iλαβ

Siλ · c†iλασαβciλβ (1)

where c†λiα is the creation operator for an eg electron on
site i of plane λ = {1, 2} with spin α = {↑, ↓}. The com-
ponents of the operator σαβ are Pauli matrices, and Siλ
is the spin operator for the t2g electrons on that site. The
on-site exchange JH parameterises Hund’s rule coupling,
and the sum 〈ij〉 runs over nearest neighbours within a
plane. Our subsequent DE spin wave analysis will lead to
t ' 0.175 eV and t⊥ ' 0.1 eV. This is much smaller than
the intra-atomic (Hund’s rule) exchange JH ∼ 2 eV which
may be estimated from the splitting of majority and mi-
nority spin LDA bands in the stoichiometric (x = 0.5)
compound [22].

In addition, there may be super-exchange interactions
between spins, both within the plane (J) and between
the two planes of the bilayer (J⊥). These can be parame-
terised by

HEX =−JEX
∑
〈ij〉λ

T iλ · T jλ−JEX⊥
∑
i

{T i1 · T i2+h.c.}

(2)

where T iλ = Siλ + 1/2
∑
αβ ciλασαβciλβ is the total spin

operator for both t2g and eg d–electrons on the site iλ.
Exchange integrals in the manganites can be FM or an-
tiferromagnetic (AF) depending on the details of orbital
occupancy and electronic structure.

To evaluate the spectrum, or even to find the ground
state of the Hamiltonian equation (1) is a formidable task,
but if we assume FM order and treat the length of the local
moment S, and the ratio JH/t as large parameters, we can
derive a controlled expansion of the properties of a bilayer
ferromagnet. A number of ways of performing this large
S expansion have been suggested (see e.g. [23–25]). Each
of these have their advantages, but in the case in point, it
is most convenient to work with eigenstates of the Hund’s
rule coupling term, and to quantize small fluctuations of
the total spin operator T iλ using a generalization of the
usual Holstein–Primakoff procedure due to Shannon and
Chubukov [17,18]. A non–technical introduction to this
method is given in [20]. Technical details, including a dis-
cussion of its relationship to other approaches are given
in [19]. We now generalize the method to a bilayer sys-
tem. In the limit t/JH � 1, t⊥/JH � 1 JH we obtain
a model in which bosonic fluctuations of the total spin
interact with a band of spinless electrons. In this limit it
makes sense first to diagonalise the Hund’s rule coupling
term in the Hamiltonian and then to introduce the hop-
ping of electrons as a “perturbation”. We do this following
the method introduced in [17] by constructing new Fermi
operators {f, f †} = 1 and {p, p†} = 1 which create eigen-
states of the Hund’s rule coupling term with eigenvalue
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−JHS/2 and JH(S + 1)/2, respectively. The Hund’s rule
coupling then reads

−JHS
2

[
f†f −

(
1 +

1
S

)
p†p+

f†fp†p

S

]
(3)

where the sum over sites has been suppressed. In the phys-
ically relevant limit JH →∞, for less than half filling, we
can remove p Fermions from the problem entirely, and
rewrite the kinetic energy term in equation (1) entirely in
terms of a band of spinless (f) electrons interacting with
fluctuations of the total spin parameterised by the Bose
operators [ã, ã†] = 1.

To accomplish this transcription of the Hamiltonian
it is sufficient to know a few of the leading terms of the
inverse transformation between c↑ and c↓ electron opera-
tors, and the new f operators creating eigenstates of the
Hund’s rule coupling term

c↑ = f

(
1− ã†ã

4S

)
+ . . . (4)

c↓ =
fã†√

2S

(
1− 1

2S

)
+ . . . (5)

To prove this result, and to derive the full transformation
between “laboratory frame” c↑ and c↓ electron operators
and the “local frame” f and p operators, together with
the appropriate algebra for the spin boson ã is an involved
task. We will not discuss the transformation in detail here
(see [20]), but note that all the necessary canonical com-
mutation and anticommutation relations, e.g. [f, ã] = 0,
etc., are obeyed.

Up to a constant the transformed DE Hamiltonian
reads

H = H0 + V2 +O(1/S3) (6)

where the kinetic energy term for f electrons is

H0 = −t
∑
〈ij〉λ

f†iλfjλ − t⊥
∑
i

{
f†i1fi2 + h.c.

}
· (7)

At this level the spin excitations ã are dispersionless.
Spin wave dispersion first enters into the problem through
interaction at O(1/S) through the interaction term

V2 = − t

4S

∑
〈ij〉λ

f†iλfjλ

[(
ã†jλãjλ + ã†iλãiλ

)(
1− 3

8S

)

−2ã†iλãjλ

(
1− 1

2S

)]
− t⊥

4S

∑
i

{
f†i1fi2

[(
ã†i1ãi1 + ã†i2ãi2

)(
1− 3

8S

)
−2ã†i1ãi2

(
1− 1

2S

)]
+ h.c.

}
(8)

where we have neglected a further four boson vertex at
O(1/S2) which is irrelevant at zero temperature.

V
1η 3ν

2η 4ν

1η2η

3ν4ν
Fig. 1. Convention for labelling vertex for interaction between
electrons and spin waves in the limit JH/t→∞. Straight lines
correspond to electrons fkη and wavy lines to spin waves ãqν ,
where k and q are momenta in–plane and η, ν = 0, π are the
momenta out of plane.

By Fourier transformation we obtain the following
Hamiltonian which describes a band of spinless electrons
interacting with (initially dispersionless) bosonic spin–
wave excitations.

H=H0 + V2 +O(1/S3)

H0 =
∑
k

(εk − t⊥) f†k0fk0 + (εk + t⊥) f†kπfkπ (9)

V2 =
1
N

∑
k1···k4

∑
ηη′νν′={0,π}

V1η3ν

2η′4ν′
f†1ηf2η′ ã

†
3ν ã4ν

× δ1+3−2−4δη+ν−η′−ν′

where we consider symmetric and antisymmetric combi-
nations of electron operators (binding and antibinding
bands), and of spin operators (acoustic and optical spin
waves), for the two planes. For the simple nearest neigh-
bour tight–binding model equation (1) the in–plane elec-
tronic dispersion is given by εk = − zt1

2 (cos kx + cos ky)
in units where the distance between Mn atoms a = 1. The
scale of interaction between electrons and spin waves V2

is determined entirely by electronic energies, but is one
order in S down on the kinetic energy term H0. There are
a total of eight physically distinct vertices (decay chan-
nels) for interaction between electrons and spin excita-
tions. The convention for labelling these vertices is shown
in Figure 1 and their algebraic expressions are given in
equations (A.1) and (A.2). The spin wave dispersion is
now determined by the leading order self energy up to
1/S2 shown in Figure 2. We first discuss the results within
the usual semiclassical (1/S) approximation.

3 Theoretical predictions

In a cubic system, at a semi–classical level of approxima-
tion, Zener’s DE mechanism leads to a FM effective near-
est neighbour Heisenberg exchange interaction between
neighbouring Mn spins, with a spin wave dispersion

ωq = zJDES[1− γq] (10)

where the size of the effective exchange interaction is set
by electron energies [16]

JDE =
1

2S2

t

N

∑
k

γkn(k). (11)
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Fig. 2. Leading self energy corrections for spin waves due to interaction with electrons in limit Jh/t→∞. Diagrams Ia–f) show
contributions for acoustic (ãq0) and diagrams IIa–f) optical (ãqπ) spin wave modes.

Here γq = 1
3 (cos qx + cos qy + cos qz) is the structure fac-

tor for a 3D cubic lattice and n(k) is the occupation of
the electronic state with momentum k, and JDE is pro-
portional to the expectation value of the kinetic energy
operator per Mn–Mn bond, relative to the center of the
band. Spin waves are exact eigenstates of a Heisenberg
FM, and therefore undamped. This simple mapping be-
tween DE and Heisenberg models breaks down, however,
when quantum effects are included [17,18].

The situation in a bilayer system is complicated in that
there are both optical and acoustic branches of spin wave
excitations, but the mapping onto an effective Heisenberg
model is once again possible at a semi–classical level. Eval-
uating the effect of interaction between electrons and spin
waves described by equation (9) to O(1/S), and now in-
cluding the effect of super–exchange terms, we obtain a
spectrum:

ω0
q = z

(
JDE + JEX

)
S [1− γq]

ωπq = z
(
JDE + JEX

)
S [1− γq]

+2
(
JDE⊥ + JEX⊥

)
S (12)

where in 2D γq = 1
2 (cos qx + cos qy), ω0

q is the dispersion
of the acoustic and ωπq the dispersion of the optical spin
wave branch. The size of the DE in-plane contribution to
the effective exchange integral is once again set by the
expectation value of the kinetic energy on a single bond,
and the DE between the two planes is determined by the
occupation difference of binding and antibinding bands:

JDE =
1

2S2

t

2N

∑
k

γ(k) [n0(k) + nπ(k)]

JDE⊥ =
1

2S2

t⊥
2N

∑
k

[n0(k)− nπ(k)] . (13)

Here we used the occupation numbers n0(k) =〈f †k0fk0〉
and nπ(k) =〈f †kπfkπ〉 of the binding and antibinding elec-
tron bands ε0(k) = −t⊥ + ε(k), επ(k) = t⊥ + ε(k) respec-
tively. Our result at this order agrees perfectly with earlier

calculations of the spin wave spectrum in a bilayer [9,10].
The effective exchange constants in equation (13) can be
evaluated as function of the doping x which gives the num-
ber of holes per Mn-site or the total number of eg elec-
trons per Mn site n = n0 + nπ = 1− x that occupy the 0,
π-bands. By using the DOS functions N0,π(ε) = N(ε±t⊥),
the electron number n0,π and the average band energy
ε0,π of the 2D binding and antibinding bands respectively
may be expressed as

n0,π =
∫ εF±t⊥

−W
N(ε)dε

ε0,π =
∫ εF±t⊥

−W
N(ε)εdε

N(ε) =
2
π2

1
W
K

([
1−

( ε

W

)2
] 1

2
)
· (14)

Here W = zt and 2W is the band width of of each of the
2D bands ε0,π(k) and εF is the Fermi level. Furthermore
K(ξ) is the complete elliptic integral of the first kind. The
total DOS Nt = N0+Nπ and the total number of electrons
n as a function of the Fermi level is shown in the inset of
Figure 3. The spikes in the DOS are logarithmic singular-
ities of each of the 2D bands at its band center (±t⊥). We
then obtain for the effective DE exchange constants after
equation (13):

JDE = − 1
2S2

1
2z

(ε0 + επ)

JDE⊥ =
1

2S2

t⊥
2

(n0 − nπ). (15)

The DE anisotropy ratio JDE⊥ /JDE is is equal to the
ratio ωπ0 /W [110]

sw of optical spin wave gap ωπ0 = 2SJDE⊥ to
the acoustical (or optical) spin wave band width W [110]

sw =
2zSJDE along [110] direction and it is given by

JDE⊥
JDE

= −
(
t⊥
t

)
W (n0 − nπ)
ε0 + επ

· (16)
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Fig. 3. Inset shows total DOS Nt(ε) = N0(ε)+Nπ(ε) and total
electron number n for the 2D bands ε0(k) and επ(k) Wt =
W + t⊥ is half of the overall bandwidth. Main figure shows
variation of JDE and JDEc ≡ JDE⊥ with hole doping under the
assumption that t⊥/t = 0.57 (fixed for x = 0.4) is independent
of x. The physical FM regime is restricted to 0.3< x <0.4.

For t⊥ � t the occupation number difference in-
creases linearly in t⊥, and using equation (16) we find
JDE⊥ /JDE ∼ (t⊥/t)2, as shown in the inset of Figure 4.
Numerical values from equation (15) are presented in Fig-
ure 3 as function of the doping x = 1 − n. It shows the
variation for the model DE for fixed t⊥ in the whole range
0≤ x ≤ 1 although it must be kept in mind that the
physical region for the FM phase of La2−2xSr1+2xMn2O7

is much smaller, according to [5] it exists for 0.3≤ x ≤
0.4. From a comparison of the experimental values of
the optical spin wave gap and the spin wave band width
at x = 0.4 with equation (15) and with the insert in
Figure 4 we can obtain estimates for the underlying micro-
scopic model parameters within the classical approxima-
tion, namely t⊥/t ' 0.57 corresponding to the experimen-
tal JDE⊥ /JDE ' 0.30 at low temperature and t ' 0.175 eV
(t⊥ = 0.1 eV) as obtained from the experimental value
SJDE = 10 meV (from W

[100]
sw = zSJDE = 40 meV [11])

by using equation (15). According to Figure 3 JDE(x)
and JDE⊥ (x) should not change dramatically with the hole
doping in the FM regime 0.3 ≤ x ≤ 0.4, namely at most
6% and 15% respectively. However this refers to the arti-
ficial situation where t⊥ does not depend on the doping.
From the experimental investigation of optical spin wave
gap and dispersion for various dopings x = 0.30, x = 0.35
and x = 0.40 [14] it is known that indeed JDE shows no
change in this region, however JDE⊥ (x) strongly increases
by a factor of four when the doping is reduced from x = 0.4
to x = 0.3.

The origin of this pronounced doping dependence of
interlayer DE is connected to the large Jahn-Teller(JT)
distortion observed [5] in the bilayer manganites. This
distortion is defined as ∆JT = apical Mn-O bond

0 1

tc/t

0

1

J cD
E
/J

D
E

0.28 0.32 0.36 0.4
x (holes/Mn)

0

2

4

6

8

10

S
JD

E
, S

J cD
E
 [m

eV
]

x=0.4

Fig. 4. Doping dependence of DE exchange constants. The
strong reduction of JDEc ≡ JDE⊥ with increasing x is due to the
strong reduction of tc ≡ t⊥ due to the JT effect of MnO units
as described by equation (17) with Ω⊥η⊥ = −2. Experimental
data from [14] (circles, squares) and [10] (triangles). In the
latter case a somewhat smaller SJDE = 8.6 meV was obtained
by fitting the spin wave stiffness constant in contrast to the
value of 10 meV obtained by fitting to the whole spin wave

bandwidth W
[100]
sw = zSJDE . The inset shows the dependence

of DE exchange anisotropy on the hopping anisotropy for a
fixed doping x = 0.4.

length/equatorial bond length. Decreasing the doping
leads to an increase of ∆JT . The driving mechanism
for this JT distortion is an increasing admixture of
d3z2−r2 states into the conduction band states which nat-
urally leads to an increase of t⊥ with reduced doping,
which in turn strongly increases the interlayer JDE⊥ (x)
as shown in the inset of Figure 4. For the limited
FM doping range one may describe this dependence
by introducing dimensionless Grüneisenparameters η⊥ =
−(∂ lnD/∂ lnx) and Ω⊥ = −(∂ ln t⊥/∂ lnD) where D =
distance between the layers of a single bilayer. They de-
scribe the doping dependence of the JT-distortion and the
distortion dependence of the interlayer- hopping respec-
tively. The JT effect on the intra-layer hopping t is ne-
glected since no doping dependence of JDE is observed.
Assuming that η⊥ and Ω⊥ are constants in the range of
x considered, this amounts to a doping dependence of t⊥
given by

t⊥(x) = t0⊥

(
x

x0

)Ω⊥η⊥
(17)

where e.g. x0 = 0.4 and t0⊥ = t⊥(x0). According to the
physical origin of the JT distortion mentioned above one
has to expect that Ω⊥η⊥ < 0. Using the above relation
in equation (15) with Ω⊥η⊥ = −2 one obtains the doping
dependence of the exchange constants shown in Figure 4
together with the experimental values for various dopings.
Using η⊥ ' 0.037 from the JT-distortions given in [5] one
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0

0.02

0.04
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0.08
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Spinwave 
Energy [eV]

Semi-classical
theory

Theory with
Quantum corrections

Fig. 5. Spectrum for optical and acoustic spin wave modes
throughout the Brillouin zone, calculated for doping x = 0.4,
t = 0.175 eV, t⊥ = 0.1 eV. Upper pair of lines – semi–classical
spin wave dispersion at O(1/S); lower pair of lines – spin wave
spectrum including quantum effects at O(1/S2).

then obtains from the above relation Ω⊥ ' −54. This
large negative Grüneisenparameter characterises a strong
dependence of the effective interlayer hopping t⊥ on the
layer spacing D within a bilayer. The JT-distortion in-
creases with temperature for constant doping implying an
increase of t⊥ and hence JDE⊥ . The DE therefore becomes
less anisotropic at higher temperature. This has indeed
been observed for x = 0.4 in diffuse neutron scattering
where JDE⊥ /JDE ' 0.5 has been found at room tempera-
ture [26] compared to JDE⊥ /JDE ' 0.3 from the low tem-
perature spin wave experiments discussed here [27].

The results for the dispersion of acoustic and optic
spin wave modes for throughout the Brillouin zone, at a
semi–classical level and for the parameters given above
are shown in Figure 5. At zero temperature, at a semi–
classical level, spin waves are undamped, i.e. states with
a single spin wave excitation are good eigenstates of the
Hamiltonian, with no allowed decay processes. The dis-
persion of spin waves is generated by their elastic scatter-
ing by the average density of electrons. At O(1/S2) spin
waves can decay through interaction with electrons into
lower energy spin excitations dressed with particle hole
pairs – an inelastic process. This leads to a damping of
spin waves, and a corresponding shift in spin wave disper-
sion to lower energy. We can evaluate both effects starting
from the Hamiltonian equation (9). We consider

ω̄νq = ωνq + Re{Σν(q, 0)}
γνq = −Im{Σν(q, ωνq )} (18)

where ω̄νq is the net dispersion and γνq the damping of the
spin wave excitation, and Σν(q,Ω) is the momentum and
frequency dependent selfenergy correction due to interac-
tion of spin waves with electrons at O(1/S2). The vari-
ous contributions to the spin wave selfenergy are shown
in Figure 2 at this order and given in Appendix A. The

 Γ X M  Γ
0.0000

0.0020

0.0040

0.0060
Spinwave 
Damping [eV]

Optical Spinwave Branch

Accoustic
Spinwave
Branc

Fig. 6. Damping of acoustic and optical spin wave modes,
throughout the Brillouin Zone, calculated for doping x = 0.4,
t = 0.175 eV, t⊥ = 0.1 eV.

new physical process involved is the inelastic scattering of
spin waves from fluctuations of charge density. Results for
spin wave dispersion, including leading quantum correc-
tions are shown in Figure 5, and values for the damping
of spin waves in Figure 6. These should be compared with
results for a single layer quoted in [28]; for t⊥ → 0 the two
theories are essentially equivalent.

The immediate conclusion which we can draw from
these calculations is that quantum effects on spin waves
in a DE bilayer are very large. The downward renor-
malisation of spin wave dispersion at O(1/S2) is a siz-
able fraction (about 30%) of the spin wave dispersion at
O(1/S). Similarly, the damping of spin waves is quite pro-
nounced, being of the scale 5–10% of the spin wave dis-
persion, rising to a maximum value ∼ 6 meV at the zone
boundary. Because of the large renormalisation of the spin
wave spectrum at O(1/S2) it would be necessary to repa-
rameterise our model to fit experimental data with the
leading quantum effects included, by increasing the sizes
of the hopping integrals t and t⊥, and including super-
exchange interactions JEX and JEX⊥ . Any increase in the
electron bandwidth would give a proportionate increase in
the damping of spin waves.

Examining the quantum corrections in more detail,
we find that the spin wave dispersion has been modi-
fied so as to give a relative softening of spin wave modes
near the zone center. This can be understood loosely
in terms of the dynamical generation of an effective
non nearest–neighbour couplings between spins by pro-
cesses O(1/S2). It is also interesting to note that the gap
between acoustic and optical modes is now momentum
dependent.

While these effects are of themselves interesting, they
do not offer any unambiguous signatures of quantum ef-
fects in the magnetism of La2−2xSr1+2xMn2O7, as one
could achieve similar modifications of the spin wave
dispersion simply by postulating additional exchange
couplings between spins on an ad hoc basis. It is the
damping of spin waves at zero temperature which sharply
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distinguishes a DE system from any conceivable Heisen-
berg ferromagnet. In a the Heisenberg ferromagnet, spin
waves are undamped at zero temperature, and damp-
ing only becomes appreciable for temperatures large com-
pared with the spin stiffness D.

The damping which we predict for the DE model
equation (1) at zero temperature is large and highly
momentum dependent. The zone centre acoustic mode
must remain undamped (in the absence of any magnetic
anisotropy) as it is the Goldstone mode of the system.
Accordingly, in the zone centre, we find that the damping
of the acoustic mode vanishes as

ΓACq = αACq5. (19)

The optical spin waves are not Goldstone modes, however,
and have a finite dispersion (and damping) in the zone
centre. We find that the latter behaves as

ΓOPq = Γ 0P
0 + αOP q3. (20)

The lower power law in q here reflects the way in which the
vertex for spin wave scattering is cut off by the interlayer
hopping t⊥.

Away from the zone centre the spin wave damping ex-
hibits stationary points at the symmetry points of the
Brillouin zone – a maximum for both acoustic and optic
modes at X , and a minimum for both at M . It is interest-
ing to note that the higher energy optic modes are not al-
ways more strongly damped than the acoustic modes, and

that the maximum damping does not occur for the highest
spin wave energies, as one might expect. In fact the mo-
mentum dependence of the damping of spin waves in DE
systems varies strongly with doping, being constrained by
both the geometry of the Fermi surface and the complex
momentum dependence of the spin wave scattering vertex.

4 Comparison with experiment

The spin wave dispersions in bilayer manganites have been
investigated by several groups [8–14], and a consensus was
reached that the data could not be explained using a near-
est neighbour Heisenberg model dispersion of the form
equation (12) [8,10–12]. A representive selection of ex-
perimental data for the dispersion of the acoustic spin-
wave mode in the [100] direction for La1.2Sr1.8Mn2O7 is
shown in Figure 7. The dispersion expected for a near-
est neighbour Heisenberg model would be of the form
(zJS/2)[1−cos(qx)], where 2zJS = 8JS is the total band-
width of the acoustic spinwave branch.

In the inset to Figure 7, we illustrate the departure
from nearest neighbour Heisenberg model behaviour seen
in experiment by subtracting from the measured points
(ωX/2)[1 − cos(qx)] where ωX is the value of spinwave
dispersion for the acoustic branch at q = (0.5, 0, 0). It
can clearly be seen that corrections to the expected semi–
classical behaviour, defined in this way, are positive. The
shaded area (a guide to eye) gives some idea of the effect
of a next nearest neighbour Heisenberg coupling on the
dispersion in this direction.
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Departures from nearest neighbour Heisenberg model
behaviour have also been observed in many (pseudo-)cubic
manganite systems, for example Pr0.63Sr0.37MnO3 [29].
Typically, what has been seen in both cubic and bilayer
systems is a softening and broadening of the zone bound-
ary spin waves. The total spin wave bandwidth measured
to the zone boundary is much less than would be predicted
on the basis of the spin stiffness D measured in the zone
center.

In the case of the bilayer system La1.2Sr1.8Mn2O7, the
dispersion of the acoustic mode near the zone center has
the form

ω0
q = ∆+D0q2 (21)

with ∆� D0, as would be expected for a FM with small
magnetic anisotropy. If we compare this with the measured
total acoustic spin wave bandwidth, as defined by the spin
wave energy at the zone boundary [11], it is about 15%
less than 2zD – this effect is illustrated by the solid line
in Figure 7, which is an extrapolation of the behaviour in
the zone center. In addition the zone boundary spin wave
modes for both cubic and bilayer systems are extremely
broad in comparison with their energy.

The theory of bilayer manganites presented here shows
that the double exchange model can exhibit both of these
effects, when quantum corrections are included. However,
the minimal model equation (1), as parameterized above,
is not sufficient to obtain a quantitative description of the
experimental results.

The dominant effect of quantum corrections to the
spinwave dispersion of a bilayer DEFM is a substantial
downward renormalization of the spin stiffness D, as was
noted for a 2D system by Golosov [28]. This means that,
to obtain a fit to the dispersion of the bilayer system with
quantum effects included, much larger values of the pa-
rameters t and t⊥ must be used. The dispersion of the
simple DE model we have considered, with quantum ef-
fects included, is shown in Figure 7, for parameters chosen
to reproduce the spinwave bandwidth at a semi–classical
level. Clearly, the overall scale of dispersion is now too
small, and t and t⊥ need to be reparameterized. Naively,
judging by the renormalization of the spin stiffness. one
would need to use a value of t approximately twice as
large.

However, this will not help us to explain the measured
deviation from nearest neighbour Heisenberg behaviour,
because the quantum corrections to the DE model
considered have the wrong “sign”, as is shown in the inset
to Figure 7. The same sign of corrections is seen for this
doping in the spinwave theory of the 2D DEFM [17,18].
Therefore including these quantum effects does not im-
prove the fit with experiment. For this reason we will not
attempt to reparameterize the model equation (1), and
discuss results only for the semi–classical values of t and
t⊥ already quoted.

The failure of the minimal model equation (1) to fully
explain the spinwave dispersion of La1.2Sr1.8Mn2O7 is nei-
ther very surprising nor very disappointing, given that we
have attempted to fit the spin wave dispersion of a com-

plex system with spin charge and lattice degrees of free-
dom throughout the Brillouin Zone, using only two ad-
justable parameters. However it is important to ask which
of the many simplifications made is to blame for this dis-
agreement with experiment?

A better fit could probably be obtained at a semi–
classical level, by substituting a more realistic dispersion
for the underlying electrons into the one loop diagrams
used to calculate the O(1/S) spin wave self energy. In
tight binding language, each hopping integral tij has a cor-
responding DE coupling JDEij associated with it. The in-
clusion of tij beyond nearest neighbours to obtain a more
realistic electronic band structure therefore also modifies
the form of dispersion of the classically equivalent effec-
tive Heisenberg model. Attempts to calculate spin wave
dispersion directly from electronic structure suggest that
this effect is important, and leads to a softening of zone
boundary modes, at least in cubic systems [30].

At a quantum mechanical level, since interactions be-
tween spin waves are mediated by density fluctuations
of the electron gas, it would be more realistic to use a
screened form of the charge susceptibility in which long
range interactions were suppressed. We anticipate that
this would also tend to enhance the softening of zone
boundary modes. The inclusion of leading quantum cor-
rections in O(t/JH), likewise leads to a softening of zone
boundary spin waves [31,32].

Each of these improvements to the model would in-
volve the introduction of new parameters, which would
need to be checked against electronic structure and other
experiments. Since the stated aim of this paper is to ex-
plore the minimal model equation (1), we will not discuss
such refinements further here.

A more interesting possibility to explain the difference
between experiment and theory would be that spin waves
are coupled to orbital and/or lattice modes, or that dis-
order leads to non trivial corrections to the spinwave dis-
persion. We return to these issues below.

The present theory is more successful in explaining
the damping at least in a qualitative way. Figure 8 shows
the experimentally observed widths of the energy scans
as a function of momentum transfer q from zone center
to the zone boundary for the acoustic spin excitations of
bilayer manganite La1.2Sr1.8Mn2O7, along with that ob-
tained from the present theory (continuous line). Data
measured at different Neutron sources have been plotted
together.

The damping which we calculate has a similar mo-
mentum dependence to that observed, but is smaller by
approximately a factor of four. Some part of the difference
in absolute value between theory and experiment can be
explained by the fact that, as discussed above, the param-
eters t and t⊥ were chosen so as to correctly reproduce
the spin wave bandwidth at a semi–classical level. Using
a more realistic value of t would increase the predicted
spinwave damping by a factor of about two.

Our conclusion is that the minimal DE model fails
to explain the softening of zone boundary spin waves in
La1.2Sr1.8Mn2O7, but can explain up to about 50% of their
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width. Of the refinements to the model discussed above,
only the use of a screened charge susceptibility would af-
fect the calculated damping of spin waves, but we do not
anticipate that this would lead to a marked increase in
their width. We therefore conclude that spin waves in the
FM phase of this bilayer manganite are coupled dynami-
cally to another mode, probably of orbital and/or lattice
excitations. Such a couplings have been proposed in the
context of the cubic manganites – for example to optical
phonons [32] or through Jahn Teller active lattice modes
to orbital fluctuations [25]. Besides contributing to damp-
ing in their own right, a coupling to lattice modes can
also lead to a substantial downward renormalization of
the semi–classical spinwave dispersion [33]. In this case
still larger values of the hopping parameter t would have
to be used to fit the data, helping to close the gap between
the measured and the calculated spinwave damping.

One further possibility that should also be investigated
is the role of disorder, which by mixing spinwaves of dif-
ferent wave number q, also contributes to their width. It
has recently been suggested that strong disorder can also
lead to non–trivial renormalizations of the spinwave dis-
persion [34].

5 Conclusions

We have constructed the simplest possible model for fer-
romagnetism in La1.2Sr1.8Mn2O7, based on Zener’s dou-
ble exchange mechanism within a one orbital picture for
a single bilayer. This model has two adjustable parame-
ters, the intra– and inter-plane hopping integrals t and t⊥.
At a semi–classical level it is equivalent to a Heisenberg
model with intra– and interplane exchange integral JDE

and JDE⊥ . The doping dependence of these parameters was
discussed, and the predictions of the effective Heisenberg
model compared with the results of inelastic Neutron scat-
tering experiments.

As the experiments show departures from simple
Heisenberg model behaviour in both the form of disper-
sion and the scale of damping of the spin waves at low
temperatures, we also calculated the leading quantum cor-
rections to spin wave self energies. These arise because of
the scattering of spin waves from density fluctuations of
the electron gas which are neglected in the semi–classical
approximation. We find that the minimal model consid-
ered cannot explain the softening of zone boundary spin
wave modes, and somewhat underestimates the damping
of spin waves, even when quantum corrections are in-
cluded. This suggests that spin waves are strongly coupled
to another low energy mode, presumably related to lattice
fluctuations, either by a direct coupling to phonons or an
indirect “orbital fluctuation” effect.

It is our pleasure to acknowledge helpful conversations with
George Jackeli, Giniyat Khaliullin and Natasha Perkins. This
work was in part supported under the visitors program
of MPI–PKS (N.S. and F.O.).

Appendix A: Spinwave–electron interaction
vertices and self energy corrections
at O(1/S2)

First we give the interaction vertices V 1η3ν
2η′4ν′ in Figure 1

and equation (9). There are eight possible channels for
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electron–spin wave interaction; these are labeled according
to the convention in Figure 1. The coefficients of these
vertices are given by

V01,03
02,04 =

1
4S

[
v13

24

2
+
t⊥
8S

]

Vπ1,π3
π2,π4 =

1
4S

[
v13

24

2
− 2t⊥ −

t⊥
8S

]

V01,π3
02,π4 =

1
4S

[
v13

24

2
+ 2t⊥ +

t⊥
8S

]

Vπ1,03
π2,04 =

1
4S

[
v13

24

2
− t⊥

8S

]

V01,π3
π2,04 = Vπ1,03

02,π4 =
1

4S

[
v13

24

2
+ t⊥

]

Vπ1,π3
02,04 = V01,03

π2,π4 =
1

4S

[
v13

24

2
− t⊥

]
. (A.1)

Where the vertex depends on in–plane momenta only
through in–plane electronic dispersion

v13
24 =

[(
1− 1

2S

)
(ε1+3 + ε2+4)−

(
1− 3

8S

)
(ε1 + ε2)

]
(A.2)

where εk = −zt1
2 (cos kx+cos ky). The fundamental energy

scales in the DEFM are set by the kinetic energy of the
itinerant electrons, and so it is natural that the electron
spin wave scattering vertices are proportional to t/t⊥.

Knowledge of the Hamiltonian equation (6) is sufficient
to develop a zero temperature diagrammatic perturbation
theory in 1/S for the spin wave dispersion of the DE bi-
layer, up to O(1/S2), and to calculate the leading con-
tributions to spin wave damping. The relevant processes
are shown in Figure 2. At O(1/S) only the single loop di-
agrams a) and b) contribute. These evaluate to give the
Heisenberg–model like result equation (12) for the semi–
classical spin wave dispersion.

The one loop diagrams also contribute a constant
term and a further renormalisation of the classical disper-
sion at O(1/S2), but all new quantum effects arise from
the new processes contributing to spin wave self energy
at O(1/S2), the “watermelon” diagrams shown in Fig-
ure 2c–f. The self energy corrections for acoustic modes

evaluate to give:

ΣIc(Ω, q)=
1

(4S)2

1
N2

∑
kq′

[
zt

2

(
γk + γk+q′ − 2γk+q

)]2

×
θ
(
ξ0
k+q′

)
θ
(
−ξ0

k

)
Ω − ω0

q−q′ − ξ
0
k+q′

+ ξ0
k + iδ

(A.3)

ΣId(Ω, q)=
1

(4S)2

1
N2

∑
kq′

[
zt

2

(
γk + γk+q′ − 2γk+q

)]2

×
θ
(
ξπ
k+q′

)
θ (−ξπk )
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π
k+q′

+ ξπk + iδ
(A.4)

ΣIe(Ω, q)=
1
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(A.5)
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1
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(A.6)

where we have written out electron energies explicitly and
suppressed terms of O(1/S3) in the vertex. The corre-
sponding processes for optical spin waves yield:

ΣIIc(Ω, q)=
1

(4S)2

1
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ΣIIf(Ω, q)=
1
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To O(1/S2), we can neglect the frequency dependence
of the denominator in these expressions and evaluate
the leading quantum corrections to the dispersion of op-
tical and acoustic spin wave branches numerically by
Monte Carlo integration.

If we restore the frequency dependence of the self en-
ergy terms, we can also calculate the imaginary part of
each. We can use this to estimate the spin wave damping
on the mass shell, by setting the external frequency equal
to the semi–classical spin wave dispersion at that wave
number, i.e. setting Ω = ω0,π

q , and eliminating all terms
in the numerator of order spin wave frequencies. The con-
tribution to damping from diagram IId) is, for example:

Γ IId(ωπq , q) =
π

(4S)2

1
N2

∑
kq′

[
zt‖ (γk − γk+q)− 2t⊥

]2
× θ

(
ξπ
k+q′

)
θ(−ξπk )δ

(
ωπq − ω0

q−q′ − ξ
π
k+q′

+ ξπk

)
.

(A.11)
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